Roll No.

B033411(033)

B. Tech. (Fourth Semester) Examination, April-May 2021

(AICTE Scheme)

(Information Technology Branch)

DATA STRUCTURES

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all questions. Part (a) of each question is compulsory and carries 4 marks. Solve any two parts from part (b), (c) & (d) and carries 8 marks each.

Unit-I are EUTUG-G (0 shall

1. (a) Define Abstract Data Type (ADT).

4

	of holl 2 l	
(b)	What is Sparse Matrix? Write an algorithm to	
	transpose any sparse matrix of $m \times n$ size.	8
(c)	Write Algorithm:	8
	(i) Insertion @ begining of doubly linked list.	
	(ii) Insertion @ specific position of doubly linked lis	st.
	(iii) Insertion @ end of doubly linked list.	
(d)	How Polynomials are represented using linked list?	
	Explain polynomial addition algorithm.	8
	Zasur Unit-II z y rad	
(a)	Explain PUSH and POP operation of STACK.	4
(b)	Write an algorithm which evaluates any given	
	POSTFIX EXPRESSION.	8
(c)	What is Recursion? Explain recursion with TOWER	
	OF HANNOI.	8
	Write short notes on:	8
	(i) D-QUEUE	

2.

[3]

		flattle illice satisfied Unit-III personale minigral (b)	
3.	(a)	Explain Array and Linked representation of Binary Tree.	4
	(b)	Explain In-order, Pre-order & Post-order tree traversing Algorithms using STACK.	8
	(c)	Explain how Insertion and Deletion can be done is BST (Binary Search Tree).	8
	(d)	Write short notes on : (i) Threaded Binary Tree (ii) AVL Tree	8
		Unit-IV	
4.	(a)	Explain Sequential and Linked Representation of graph.	4
	(b)	Explain Breadth First Search and Depth First Search Algorithm.	8
	(c)	What is Minimum Spanning Tree? Explain Kruskal Algorithm for constructing MST.	8

(ii) Priority Queue

	(d) Explain Adjacency and Path Matrix with suitable	
	example.	8
	Unit-V	
5.	(a) Explain Hashing. Explain the role of Hash function in Hashing.	4
	(b) Explain Selection and Insertion Sort. Compare the complexities of both algorithms.	8
	(c) Explain HEAP SORT with an example.	8
	(d) Explain Binary Search.	8
	(b) Explain Breadth First Search and Depth Pirst Search Algorithm	
	(a): What is Minimum Spanning Tree? Displies Kraskal.	
	Algorithm for constructing MS-I)	